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ABSTRACT 

We find a necessary and sufficient condition for an element of prime or- 

der in a finite group to be in a normal p-subgroup. This generalizes the 

Baer-Suzuki Theorem. Our proof depends on a result about elements of 

prime order contained in a unique maximal subgroup containing a result 

of Wielandt. We discuss various consequences, linear and algebraic group 

versions of the result. 

1. I n t r o d u c t i o n  

The Saer-Suzuki Theorem (cf [G1, p. 105]) asserts that if X is a subgroup of a 

finite group G azld every pair of conjugates of X generates a nilpotent subgroup, 

then the normal closure of X in G is also nilpotent. There axe some very short 
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proofs of this result (cf [ALl). Observe also, that it suffices by induction to prove 

the result for subgroups of prime order. 

In this article, we show that a weaker condition actually suffices. The proof, 

however, depends upon the classification of finite simple groups. We first in- 

troduce some notation. If x ,g  E G, let xg = g - l x g  and let Ix, g] = x - i x  g = 

x - l g - l x g .  Let Ov(G ) denote the largest normal p-subgroup of a finite group G. 

Let Ov,(G ) denote the largest normal subgroup of G which is a p'-group. Our 

first main result is: 

THEOREM A: Let p be a prime. Let G be a finite group. Let x E G be an element 

of order p such that [x,g] is an p-element for every g E G. Then x E O v ( a  ). 

An easy consequence of the previous result is: 

COROLLARY B: Let p be prime. Let G be a finite group. Let X be a p-subgroup 

of  G such that [x, g] is a p-element for every x E X and g E G. Then X <_ Ov( G ). 

The Baer-Suzuki theorem is an immediate consequence of Corollary B. We 

should note that if p = 2, then Theorem A is equivalent to the Baer-Suzuki 

Theorem. Thus we need only prove the result for p odd (although our proof does 

go through for p = 2 as well). The proof proceeds as follows - -  if G is a minimal 

counterexample, it follows easily by a result of Wielandt [W] that x is contained 

in a unique maximal subgroup M. We use results of Aschbacher [A2] and Seitz 

IS] to prove the following result of independent interest: 

THEOREM C: Let x be an element o[ order p in the finite group G. Assume that 

x is contained in a unique maximal subgroup M of G and that M contains no 

nontrivial normal subgroup of  G. Then the Sylow p-subgroup of  G is cyclic or 

Op(M) = 1 and G = A2p with p > 13. 

If M contains a nontrivial normal subgroup, an easy induction argument com- 

pletes the proof. If the Sylow p-subgroup of G is cyclic, we use a block theoretic 

argument to obtain a contradiction. 

We also consider the opposite situation - -  when each Ix, g] is a p~-element. In 

this case, the result follows from the Z*-theorem and its analogue for odd primes 

(the proof of which depends upon the classification of finite simple groups). 

THEOREM D: Let  G be a finite group. Let x • G be an element o/. prime order 

p. 

(i) / f  [x, g] is a p'-element t'or every g • G, then x is central modulo Op,(G). 
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(ii) If  r ~ p is prime and [z,9] is an r-element for every g E G, then z is central 

modulo Or(G). 

Theorems A and D yield: 

COROLLARY E: Let G be a finite group alld p a prime. Let X be a subgroup of G 

such that [z, 9] is a p-element for every z E X and 9 E G. Then [X, G] ~_ Op( G). 

As Aschbacher [A1] has observed, there is a linear version of the Baer-Suzuki 

Theorem (in fact, the two versions follow from one another). We mention two 

such results here (Aschbacher's version was under the assumption that ( X , X  g) 

is unipotent for all 9 E G). The first follows immediately from Corollary E. The 

second depends upon results on algebraic groups. 

COROLLARY F: Let V be a finite dimensional vector space over a field k. Let 

G < GL(V).  Let X < G such that [x, g] is unipotent for all z E X ,  g E G. 

(i) [G, X] is a unipotent normal subgroup of G. 

(ii) If  X is triangular, then (Xglg E G) is triangular. 

COROLLARY G: Let V be a finite dimensional vector space over a field k. Let 

G < GL(V).  Assume that either k has characteristic 0 or that G is connected. I f  

X < G and ( X , X  9) is triangular for each g E G, then (XgIg E G) is triangular. 

The paper is organized as follows. In section 2, we prove Theorem A when 

the Sylow p-subgroup is cyclic. In section 3, we prove Theorem C, complete the 

proof of Theorem A and prove Corollary B. In section 4, we prove Theorem D. In 

section 5, we discuss some consequences of the theorems - -  in particular, linear 

versions of the results. 

It is di~cul t  to see how these results can be improved much. Probably Theorem 

A is true if we only assume that z is a p-element and replace the condition that  

every commutator  with z be a p-element by the condition that every commutator  

with z is either 1 or a p-singular element. 

If z E S,, is a transposition, then for any g E S,,, [z, g] has order 1, 2 or 

3. Thus, there is little hope of replacing p by a set of primes in Theorem A. 

Similarly, i f z  q A,, is a 3-cycle, then [z,g] has order 1, 2, 3, or 5 for any 9 E S,, 

(and more generally if z E A,, is a p-cycle, then any commutator [z, g] has order 

which is a product of primes all less than 2p). 

It is perhaps worth mentioning an easier result of a similar nature. Let G be 

a finite group and ~r is a set of primes. If every commutator  in G is a ~'~element, 
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then G' is a r-group. This follows immediately from the Focal Subgroup Theorem 

(cf [ a l ,  p. 250]). 

2. Cycl ic  Sylow Subgroups  

We prove Theorem A when the Sylow p-subgroup of G is cyclic. Indeed, we will 

prove a stronger version. The proof is block theoretic. See IF, Chapter VIII for 

a summary of the results about blocks with cyclic defect groups. 

THEOREM 2.1: Let G be a tlnite group, x in G a p-element with p a prime. / f  

(a) G has cyclic Sylow p-subgroups, and 

(b) [x, g] = 1 or Ix, g] is p-singu/ar for each g • G, 

then x • Op( G). 

Proof: Note that if p = 2 and G has a cyclic Sylow 2-subgroup, then G has a 

normal 2-complement. Then the hypothesis implies that x • Z(G) and the result 

follows. So assume p is odd. We also may assume that x ¢ 1. 

Let H = Ca(x).  Let 1 • T be a right transversal to H in G. If X is a complex 

irreducible character of G, then, since C~ := ~-~tET xt is represented (in any 

representation affording X) by the scalar matrix of trace [G : H]X(x), it follows 

that 

(1) ~ x(x-'x') = [O: H]lx(x)l~/xO). 
tET 

Let P be a Sylow p-subgroup of G containing x and e = [NG(P) : CG(P)]. 

Note that  since P is cyclic, e](p - 1). Set pa = ipi. 

Let B denote the principal p-block of G. Recall that since P is cyclic, all 

irreducible characters of B are constant on nonidentity p-sections (if y is a p- 

element of G, the p-section corresponding to y consists of all elements of G whose 

p-part is conjugate to y). There are e nonexceptional characters 1 = pl ,  # 2 , . . . ,  pe 

in B such that for each i, there is a sign ei such that pi(y) = ei for all p-singular 

elements y. There are (pa - 1)/e exceptional characters in B which agree on 

p-regular elements. 

If )~ is a nontrivial linear character of P,  let ~* denote its orbit under NG(P).  

Let A denote a full set of representatives for the orbits of NG(P) of the nontrivial 

linear characters of P. For each A*, there is an exceptional character X~,* with 

the property that there is a fixed sign e0 (independent of A*) such that  for any 
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y E P #  :=  P -  {1}, X~" takes on the constant  value e0 ~ZEA"/~(Y) on the 

p-section of y. 

Consider  (1) when X = #i is a nontr ivial  nonexcept ional  charac ter  in B.  T h e n  

pi(x) = el. Similarly, since x - i x  t is p-singular for each 1 # t E T, X(X-lX t) = ei. 

We thus  obtain  [G:  H ] / 0 , ~ ( 1 ) )  = i,~(1) + ( [G:  H] - 1) , i ,  and so 

[G:  n]:~(:~ - ~ ( : ) ) / ( ~ ( : ) )  = ~ , ( : )  - :,. 

If  p i (1)  = ei, then  ei = 1 and  P is contained in the kernel K of #i. By  induction,  

x E Ov(K ) <_ Or(G), and the result  follows. Otherwise,  -ei[G : HI  = #i(1) ,  

forcing ei = - 1 .  So we m a y  assume tha t  ei = - 1  for i = 2 , . . . ,  e. 

In par t icular ,  #~(1) = [G : HI .  Also, observe tha t  if e = 1, then  G has a normal  

p -complement  (el [G1, p. 252]) and  the hypothesis  implies tha t  z is central  and  

so in Op(G). So we assume tha t  e > 1. 

We provide two proofs at  this point.  

First ,  observe tha t  Z = Z(G)  is a pLgroup (since e # 1). If  Z is nontrivial ,  

then  by induct ion x Z  E Ov(G/Z  ). Hence x E F(G),  as desired. Thus  Z = 1. 

We next  claim tha t  G = (x, x g) for some g E G. Otherwise,  by  induct ion (x) 

is normal ized by  Ix, xg) for all g E G. This  implies tha t  x E Ov(N ) <_ Op(G), 

where N = (x ~ Ig E G). 

Thus  H N Hg <_ Z = 1. Since G ~t H H  9, it follows tha t  IGI > IHI 2. On 

the o ther  hand,  we have shown above tha t  there is an irreducible nonexeept ional  

charac ter  p in B with #(1) = [G :  H].  Thus  [G :  H]  2 _< IGI and  IG} _< IHI ~. This  

contradic t ion completes  the proof.  

For a second proof,  note  tha t  it follows f rom the block or thogonal i ty  relat ions 

tha t  

(2) ~xO)x(:) =o. 
xEB 

If  e = p - 1 and  a = 1, then  by a slight abuse  we m a y  regard  all charac ters  of 

B as nonexcept ional .  Then  (2) yields the contradict ion 1 - (p - 1)[G : H] = 0. 

We therefore assume tha t  1 < e < pa _ 1. 

Let t ing  Xx* denote  a fixed except ional  charac ter  in B with  ,~* = { i l l , . . . ,  fie}, 

we have Xx* = e0(fll + . . .  +/~e)  on P # .  I t  follows f rom (2) t ha t  

I -  (e- 1)[G: H I -  eoXx-(1) -- O. 
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Since e > 1, e0 = --1. Summing (1) over all the exceptional characters, we 

obtain (observing that  the exceptional characters sum to take value -e0 on each 

p-singular element of G): 

[G:  H]([(p ° - e ) /xx .  (1 )1 -  1) = [(p" - 1)/e]XX.(1) - 1, 

forcing Xxo(1) < (p" - e), a contradiction as Xx.(1) = - e ( m o d p  °) (for notice 

that  Xx- +i l l  + " "  +f i ,  vanishes on P #  and so must be a multiple of the character 

of the regular representation of P) .  

3. Un ique  M a x i m a l  Subgroups  

We first prove Theorem C. The proof is based on a result of Aschbacher [A1, 

Theorem 2] which in turn partially depends on a result of Seitz [S]. 

P roo f  of  Theorem C: First consider the case that p = 2. Assume that  x is an 

involution of G and is contained in a unique maximal subgroup M of G which 

contains no normal subgroup of G. Let A be a proper normal subgroup. Since 

A is not contained in M,  G = (A,x).  I f 9  E G, set W 0 --- W = (zzg). If W is 

normal  in G, then G = (Y, x) for any nontriviai subgroup Y of W. It follows that  

G is dihedral of order 2r for some prime r. If I" is odd, then the Sylow 2-subgroup 

of G is cyclic. If r = 2, then M is normal in G. So we may assume that  W is 

not normal in G f o r a n y 9  E G. Then x E N a ( W )  mad so N o ( W )  <_ M. In 

particular,  xg E M and so M contains the normai closure of x. 

So assume p is odd and a Sylow p-subgroup of G is not cyclic. Thus x E E,  

an elementary abelian noncyclic p-subgroup. Hence M is the unique maximal 

subgroup containing E.  It  follows from [A2, Theorem 2] that  one of the following 

holds: 

(a) G is a group of Lie type of rank 1 in characteristic p and M is a Borel 

subgroup, 

(b) p = 5, G = Aut(Sz(32)) and M is the normalizer of a Sylow 5-subgroup, 

o r  

(c) G = A2p with M the normalizer of Ap x Ap. 

First consider (a). If  G = L~(q) with Plq, then there is a unique (in Aut(G))  

class of elements of order p. It follows that x is contained in a Borel subgroup 

and also a subgroup isomorphic to L2(p). Tlms q = p and the result holds. 

If G = U3(q), there are two cla~sses of subgroups of order p. Of course, x is 

contained in a Borel subgroup. If x is a transvection, then x 6 H ~- SL2(p) 
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(acting reducibly). If x is not a transvection, then x E H ~ L2(p) (acting 

irreducibly). Thus, x is not contained in a unique maximal subgroup. 

If G -- 2G2(32m+l) (with p = 3), then it follows by [Wa] that every element 

of order 3 is conjugate to an element of 2G2(3) ~ Aut(L2(8)). Thus rn = 0. 

Since the Sylow 3-subgroup of L2(8) is cyclic, G = Aut(L2(8)). Since x ~ G', it 

follows that x induces a field automorphism on L2(8) (there is a unique class of 

subgroups of order 3 in G not contained in G I) and x E No(S)  for some Sylow 

7-subgroup of G. Thus x is contained in more than one maximal subgroup of G. 

Now consider (b). Since x ~ G*, it follows that x induces a field automorphism 

on G I. Thus x normalizes a Borel subgroup of G ~ and hence is not contained in 

a unique maximal subgroup. 

Finally consider (c). A p-cycle is obviously contained in several maximal sub- 

groups. Thus x is a product of two disjoint p-cycles. Clearly x is contained in 

N, the normalizer of Ap x Ap. Note that N is maximal, for if N < X,  then X 

is primitive and contains a p-cycle, whence X = G. Since Op(N) ~ 1, it only 

remains to prove that p ) 13. Note that if 2p = q + 1 with q a prime power, then 

x E L2(q) < A2p. This is the case fo rp  = 3,5,7 and 13. I fp  = 11, then x E M22. 

This completes the proof of the theorem. 

We note that for G =- A2p and x a product of two disjoint p-cycles, then x wiU 

often be contained in a unique maximal subgroup (containing Ap x Ap). This will 

be the case unless there exists a nontrivial primitive group of degree 2p (note that  

for p > 5, it follows from the classification of finite simple groups that primitive 

groups of degree 2p are in fact 2-transitive). 

P roo fo fTheorem A: Let G be a minimal counterexample. Let X -- (x). Clearly, 

we may assume that Ov(G ) = 1. We may also assume that X is not contained in 

any proper normal subgroup K of G. For if so, then by minimality X <_ Op(K) < 
Op(G). In particular, it follows that G = (x g [g E G). If X < H with H a proper 

subgroup of G, then by the minimality, X < Op(H). Thus X is subnormal in/-/.  

It follows by [W] that either X is subnormal in G or X is contained in a unique 

maximal subgroup M of G. If X is subnormal in G, then X _< K with K normal 

in G, a contradiction as above. 

So we may assume that X is contained in a unique maximal subgroup M and 

moreover that X < Op(M). In particular, M is a p-local subgroup. 

Let K be a nontrivial normal subgroup of G contained in M, P a Sylow p- 

subgroup of G containing x and Q = P n K.  By the Frattini argument, G = 
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KNa(Q) and x q Na(Q). If Na(Q) is proper in G, then, by the uniqueness of 

M, Na(Q) <_ M. This implies G = M, a contradiction. Since Or(G ) = 1, this 

implies Q = 1 and K is a p'-group. Also, by minimality K X / K  < Or(G/K ). 

Thus as G is the normal closure of X,  G = K P  with P a Sylow p-subgroup of 

G. Since IX, K/ = 1, it follows that G = K x P and so X < P = Or(G), a 

contradiction. Thus M contains no nontrivial normal subgroup of G. 

By Theorem 2.1, the Sylow p-subgroup of G is not cyclic. By Theorem C, 

Or(M ) = 1. This contradiction completes the proof. 

P roof  of Corollary B: We may assume that Or(G ) = 1. We claim that X = 1. 

If not, choose x E X of order p. Then x satisfies the hypotheses of Theorem A 

and so x fi Or(G ) = 1, a contradiction. 

4 .  T h e  P r o o f  o f  T h e o r e m  D 

We first sketch a proof of the odd analogue of the Z* theorem. It is well known 

to many that  it follows easily from the classification of finite simple groups. See 

also [Ar]. 

THEOREM 4.1:  Let G be a tJnite group and p a prime. If x E G has order p and 

is not central modulo Of(G), then z commutes with some conjugate x~ ~ x. 

Proof.." Let G be a minimal counterexample. We claim U = Of(G) = 1. If 

not, then by minimality, there exists a conjugate y of z such that xU ~ yU and 

[x, y] E U. By Sylow's theorem, applied to (U, z, y}, it follows by replacing y by 

some conjugate (under U), we caal assume that z, y are contained in a p-subgroup. 

Then [x, y] is both a p-element and a pt-element. Hence [x, y] = 1 and G is not 

a counterexample. 

So Of(G) = 1. Let X = (z}. So X is not central in G. If X is contained in 

a normal subgroup K,  then X < Z(K). So we may take K abelian. Then any 

two conjugates of x commute, a contradiction. It follows that G is the normal 

closure of X.  

If a Sylow p-subgroup of G is cyclic, it follows that for any nontrivial p-subgroup 

Y,  NG(Y) = Ca(Y) (since we may assume that X < Y by conjugation - then 

NG(Y) < No(X) = Ca(X)). Then G contains a normal p-complement (cf [G1, 

p. 2531). Since Of(G) = 1, this forces G to be a p-group and X to be central. 

So we may assmne that a Sylow p-subgroup of G is not cyclic. Moreover, we 

may assume that X is central in any proper overgroup H with Of(H)  = 1. In 
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particular, X is central in any p-subgroup containing it mid X centralizes Op(G). 

Since the same is true for any conjugate of X,  it follows that  Op(G ) = Z(G). In 

particular, Op,(G/Ov(G)) = Op(G/Op(G)) = 1 and X is nontrivial in G/Op(G). 

If Ov(G ) ~ 1, then there exists a conjugate of x, y # x such that  [x, y] E Op(G). 

It follows that  z, y generate a p-subgroup and as we observed above, this implies 

that  [x, y] = 1, a contradiction to the fact that  G is a counterexample. Hence 

Ov(G ) = 1. It follows that  G contains a normal subgroup A which is a direct 

product  of groups Li each isomorphic to a fixed nonabelian simple group L. 

Since Op,(G) = 1, p divides the order of L. If x does not normalize each Li, 

then z will normalize but  not centralize a Sylow p-subgroup of A, a contradiction. 

Thus x and every conjugate of x normalizes each normal simple subgroup of A. 

Hence A is simple. 

It follows by [Gr] that  x cannot induce an outer automorphism on A. Also, 

x cannot centralize A (for this would imply that  G, the normal closure of x 

centralizes A). Thus x induces an inner automorphism on A and so we may 

assume that  G = A. We now apply [G2, 4.250] to conclude that  G - U3(p); 

G ~- Mc, Co2, or Co3 with p = 5; G = G2(q),q # 3" or J2 with p = 3; or 

G = J4 with p = 11. It is straightforward to verify that  in each of these cases, 

NG(X) # Ca(X),  whence there exists g E G with z # zg E X.  This completes 

the proof. 

Proof of Theorem D: (i) We need to show that x is central in G/Op,(G). If not, 

then, by the previous result, x commutes with xg ~ x. Then Ix,g] = x - i x  g is a 

nontrivial p-element. This contradicts the hypothesis. 

(ii) We may assume that  O,(G) = 1. By (i), z is central modulo A = Op,(G). 

Let Q be a Sylow q-subgroup of A for a prime q # r. By the Frattini argument,  x 

normalizes some conjugate of Q and by hypothesis, x centralizes this conjugate. 

Similarly, x normalizes some Sylow r-subgroup R of A. Thus A = RCA(x) and 

so [x, A] = [x, R] is a normal v-subgroup of A. Thus [x, A] < Or(G) = 1. Since 

B = (A, z} is normal in G and x E Z(B), it follows that  [x, g] is a p-element for 

all g E G. By hypothesis, it is also an r-element. Thus z E Z(G),  as desired. 

P roof  of  Coro//ary E: Let G be a minimal counterexample. We may assume 

that  Op(G) = 1. We need to show X is central in G. It suffices to assume that  

X is an r-subgroup for some prime r. If 7' = p, the result follows from Corollary 

B. If r ¢ p, it follows from Theorem D(ii) that every element x of order r in X 
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is central. 

In particular, Y = X f3 Z(G) # 1. Since Op(G/Y)  = 1, it follows by induction 

that X / Y  is central in G / Y .  Hence, if g E G and z E X ,  [g,x] E Y, a p'-group 

and [g, x] is a p-element. Thus X is central in G as required. 

5. L i n e a r  G r o u p s  

Let k be a field of characteristic r. A subset of matrices is said to be triangular if 

it is conjugate (in GL,,(k)) to a subset of the set of upper triangular matrices. It 

is fairly easy to translate between results about finite groups and linear groups. A 

result about linear groups will apply to finite groups since we can always embed 

the finite group in a linear group of arbitrary characteristic. Thus, for example, 

Aschbacher's linear version of the Baer-Suzuki Theorem [A1] certainly implies 

the classical Baer-Suzuki Theorem. Since finitely generated linear groups are 

residually finite (and even more), it is not too difficult to obtain consequences 

for linear groups from corresponding results about finite groups. 

The mechanism for translating our results about finite groups to linear groups 

is provided by the next result. 

LEMMA 5.1: Let G be a finitely generated subgroup of GLn(k). Let r be the 

characteristic of k. Let zl  , . . . ,  z , ,  E G # and y l , . . . ,  ya be elements of G which 

are not unipotent. There exists a homomorphism p : G ~ GL,,(F) with F a 

finite field with the following properties: 

(a) For each i , j ,  p(xi) # 1 and p(yj) is not unipotent. 

(b) I f  r > 0, then F also has characteristic r. If  r = O, then F can be chosen 

to have arbitrarily large characteristic. 

(c) p maps unipotent e/ements to unipotent e/ements. 

Proof: Let R be the finitely generated subring of k (containing 1) generated 

by all the matrix entries of the generators (and their inverses). Note that (7 < 

GLn(R). Let ai be some nonzero entry of I - xi and let b i be a nonzero entry 

of ( I  - yi)" .  Let S = R[a,  1, bT~, 1 < i < m, 1 < j < d]. If r = 0, replace S by 

S[1/c!] for any fixed positive integer c. Let J be a maximal ideal of S and set 

F = S / J .  Since F is a field which is finitely generated as a ring, it is a finite 

field. Note that F has characteristic 7" if 7" is positive and has characteristic s > c 

if r =  0. 
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Consider the natural ring homomorphism p : M,,(S) --~ Mn(F). Then p in- 

duces a group homomorphism fl'om G into GL,,(F). Since p(ai) # 0 # p(bj), 

p(xi) # 1 and p(yj) is not unipotent. 

Obviously, p maps unipotent elements to unipotent elements. 

As an illustration, we prove the following well known result. We give a proof 

which is a bit different than the usual one, but is in the spirit of this section. 

LEMMA 5.2: Let G be a subgroup of GLn(k). The following are equivalent: 

(a) G is triangular. 

(b) G' consists of unipotent elements zmd if g E G, then all eigenvalues of g are 

ink .  

(c) Every commutator of G is unipotent and all eigenvalues of elements of G 

are in k. 

Proof: Clearly (a) implies (b) and (b) implies (c). We prove (c) implies (a). 

Since we are assuming all eigenvalues are in the field, there is no loss in assuming 

that k is algebraically closed. There is no loss of generality in assuming that G is 

finitely generated (if every finitely generated subgroup of G fixes a line, so does 

G). 
I f / - /  _ ( G L n ( F ) ,  F a finite field of characteristic r with every commutator 

an r-element, then as we observed in the introduction, H ~ is an r-subgroup. In 

particular, H ~ is nilpotent (of class at most n). Thus, the same holds for G by 

the previous Lemma. 

Now we do a double induction on the derived length of G and on n. If G is 

abelian (or in particular n - 1), the result is clear. Since the derived length of 

G ~ is less than that of G, it follows that G ~ is triangular. Since G ~ is generated 

by unipotent elements, it is thus unipotent. By induction on n, we may assume 

that G acts irreducibly. However, the fixed points of G ~ are G-invariant and are 

nonzero. Thus G * = 1, G is abelian and the result follows. 

We now prove Corollary F, which can be viewed as the linear version of Corol- 

lary E (note that Lemma 5.2 is essentially the case X --- G - of course, the proof 

of Lemma 5.2 does not depend upon the classification of finite simple groups 

while the next result does). For the convenience of the reader, we restate the 

result. 

THEOREM 5.3: Let G ~_ GLn(k). Let X ~ G. If Ix, g] is unipotent for every 

x E X and g E G, then 
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(a) [G, X] is a normal unipotent subgroup of G, and 

(b) g X is triangular, then (Xglg ~ G) is triangular. 

Proof." (a) [G, X] is always normal in G. We may assume that G is finitely 

generated. Suppose y E [G,X] is not unipotent. Then, by Lemma 5.1, there 

exists a homomorphism p : G --* GLn(F)  with F a finite field of characteristic s 

such that [p(x), p(g)] is unipotent for all x E X, g E G (and in particular is an 

s-element) but  p(y) not unipotent. By Corollary E, [p(G), p(X)] is an s-subgroup 

and so p(y) is unipotent, a contradiction. 

(b) We may assume by induction on n that G acts irreducibly. In particular, 

G contains no normal unipotent subgroups. Thus, by (a), X is central. Since X 

is triangular, the result follows. 

We should note that it is not true that if (X, Xg) is triangular for each g E G, 

then (X~Ig E G) is necessarily trimxgular. An easy example is obtained by 

letting k be a field of characteristic 3, G = Sn <_ GLn(k) with n > 3 and x E G 

a transposition. Then (x, x g) is either elementary abelian or is isomorphic to $3. 

It follows by Lemma 5.2 that (x,x g) is triangular. Clearly, G = (xglg E G) is 

not triangular. 

Note that in the above example, it follows that [g,x,x] is unipotent for all 

g E G, but  [G, x] is not. 

A similar example can be constructed for fields of any odd characteristic. Let 

k be a field of characteristic p for some odd prime p. Let D be the dihedral 

group of order 2p and embed D < Sp < GLp(k). Let G = ED, where E consists 

of the diagonal matrices of determinant 1 with order at most 2. Let x E D be 

an involution. Then it is straightforward to check that for any g E G, either x 

commutes with x ~ or xx~ has order p. In particular, (x,x~) is triangular. On 

the other hand, G = (xg Ig E G). Since G' is not a p-group, G is not triangular. 

Thus we have shown: 

PROPOSITION 5.4: Let k be a ~eld of odd characteristic. There exists a positive 

integer n, a tlnite group G < GLn(k) and x E G such that (x,x g ) is triangular 

for each g E G but (z 9 [g E G) is not triangular. 

The next two results show that for connected groups or over fields of char- 

acteristic 0, we do have a triangular version of the Baer-Suzuki theorem. The 

proofs use the theory of algebraic groups (cf [B] or [H]) and do not depend upon 

the classification of finite simple groups. 
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THEOREM 5.5: Let G be a connected subgroup (in the Zariski topology) of 

GLn(k)  with k a field. Let x • G a~d N = (xglg • G}. Assume that alt the 

eigenvalues of x are in k. The following are equivalent: 

(a) N is triangular. 

(b) is triangular for each g e C. 

(c) [x, x g] is unipotent for a/l g E G. 

(d) [g, x, x] is unipotent for all g • G. 

(e) [x, g] is unipotent for a/l g E G. 

(f) [G, x] is a unipotent normal subgroup of G. 

Proof.." We may assume that k is algebraically closed. Clearly (a) implies (b) 

and (b) implies (c). Also, (f) implies (e) and (e) implies both (c) and (d). 

We next show the equivalence of (a) and (f). It is obvious that (f) implies 

(a). We prove (a) implies (f) by induction on n. We can assume that G acts 

irreducibly. Since N is triangular, N has a nonzero eigenspace (where N acts via 

scalars). Clearly G permutes the finitely many nonzero eigenspaces of N. The 

stabilizer of one of these subspaces is a closed subgroup of G of finite index in G. 

Since G is connected, this implies N consists of scalars and the result follows. 

Let G be the closure of G in G L , ( k )  (in the Zariski topology). We now prove 

that  (c) implies (f). Consider the map ¢ : G ~ G by ¢(g) = [x, zg]. Since 

¢(G) C U, where V is the set of unipotent elements of G, ¢(0)  C U. Since the 

set of unipotent elements in G is closed, there is no loss of generality in assuming 

that G = G is a connected algebraic group. 

Suppose the result is false and let G be a counterexample of minimal dimension. 

The minimality implies that G is an irreducible subgroup of GLn(k).  In partic- 

ular, G is reductive. Let B be a Borel subgroup of G containing x. Let P > B 

be a maximal parabolic subgroup of G. If y is any conjugate of x contained in 

P,  then by induction, [y, P] is a normal unipotent subgroup of P.  It follows that 

y normalizes B and so y E B. Thus W := (xg : g E G, xa E B) < B is a normal 

subgroup of P.  If W is normal in G, then W = N is triangular, whence (a) and 

so (f) holds. Thus, we may assume, by the maximality of P,  that P = N a ( W ) .  

Hence, there is a unique maximal parabolic subgroup containing B and so G' has 

rank one. So G' ~- (P)SL2(k) .  By mtdtiplying x by a central element, we may 

assume that  x E G' = G and that if x is semisimple, a := tr(x) ~ -t-2. If z is not 

semisimple, then +x  is a transvection and Ix, xg] is not unipotent for any g ~ B. 
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If x is semsimple, then we may assume that x = diag(a, o~ -1). Then 

:) 
is conjugate to x and Ix, y] is not unipotent. This contradiction completes the 

proof of this case. 

Essentially the same proof (reducing to a rank one group and verifying the 

equation there) yields (d) implies (f). This completes the proof. 

If (x) is connected, then x is in the connected component of G and the previous 

result applies. In particular, this is true if x is unipotent and k has characteristic 

0. In fact, we can drop the connectedness hypothesis if we assume characteristic 

zero. The characteristic 0 assumption implies that all unipotent subgroups are 

connected. It also implies that the result holds for groups of dimension 0 (since 

the group will have no unipotent elements). 

THEOREM 5.6: Let G be an algebraic group over an algebraically dosed field 

k of characteristic zero. Let Ru(G) be the unipotent radical of G and G O the 

connected component of G containh2g 1. Let x 6 G and N = (x 9 [g 6 G). The 

following are equivalent: 

(a) [NG°,N] <_ Ru(G). 

(b)  = then is unipo ent for each g • G. 

(c) [x, xg] is unipotent for all g • G. 

Proof." Clearly, (a) implies (b) and (b) implies (c). We prove that (c) implies (a). 

Let G be a counterexample first of minimal dimension and then with [G : G °] 

minimal. Then R~(G) -- 1. If G o = 1, then N is a normal abelian subgroup and 

so (a) holds. 

We claim G = G°(x). If not, then by minimality, [x,G °] _< R~(G) = 1 and so 

z centralizes G °. Thus N centralizes G °. Let C = CG(G°). Then C O is a torus. 

If C O = 1, then g is a finite normal subgroup of G, whence [G°N, N] = [g, N] 

contains no unipotent elements. Thus N is abelian and (a) holds. Otherwise, by 

passing to G/C °, we see that [N, N] < C o which contains no unipotent elements 

and again N is abelian and (a) holds. This proves the claim. 

Suppose G o = T is a torus. Then Ix, x t] = 1 for all t • T, whence [x, Ix, T]] = 1. 

Since x induces an automorphism of finite order on T, it follows that Ix, T]NCT(x) 

is finite. Thus [x, T] is finite and connected, whence Ix, T] = 1. Since G contains 

no unipotent elements, it follows that N is abelian and so (a) holds. 
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By a result of Steinberg [St, 7.2], we can choose a Borel subgroup B of G 

such that x E Na(B). Let U be tile unipotent radicial of B. Since B # G o 

(otherwise, G o is a torus), it follows by minimality that [x, B] < U. Let P be 

a parabolic subgroup of G o containing B and assume that x normalizes P and 

P is maximal with respect to this. Let W = (xP). By the minimality of G, 

[WP, W] < R , (P)  < B. In particular, W < Na(B). The same is true for 

any conjugate of x contained in Na(B) (and observe that if y = x~ E Na(B), 

then P* and P* are G°-conjuga te  (since G = G°(z)) and so y normalizes P).  

Let V = (xgig E G, xg E Na(B)). It follows that [VP, V l < R=(P) < U. In 

particular, P normalizes V. If G o normalizes V, then V = N and [N, N] is a 

unipotent group. Since R,(G) = 1, R~(N) = 1 and N o is a torus. In particular, 

N contains no unipotent elements. Thus [NB, N] < U n N = 1 and the same is 

true for any Borel subgroup. The result follows in this case. 

By the maximality of P,  it thus follows that P = Nao(V) and so there is 

precisely one such parabolic subgroup (i.e. there is a unique maximal element 

among the parabolics containing B which are x-invariant). Set H = [G °, G°]. 

We claim H is a simple algebraic group. If not, then x must permute the simple 

factors of H transitively (by the uniqueness of the parabolic subgroup) and then 

x will not centralize B/U as we observed above. Again, by the uniqueness of 

the maximal x-invariant parabolic subgroup containing B, it follows that x must 

induce a graph automorpkism of the Dynkin diagram of H and have only one 

orbit. This implies that either H has rank one or H is of type A2(k). Again, 

in the latter case, it follows that x will not centralize B/U, a contradiction. So 

t t  ~ (P)SL2(k) and therefore x must induce an inner automorphism. As in the 

proof of the previous result, this cannot occur. This completes the proof. 

In Theorem 5.6, if we only assume that G < GL,,(k) with k of characteristic 

zero, (b) and (c) are still equivalent (since we can replace G by its closure). We 

can now prove the triangular version of Baer-Suzuki (Corollary G). 

THEOREM 5.7: Let G < GL,,(k) with k a tleld. Assume that either k has 

characteristic 0 or that G is connected. Let X be a triangular subgroup of G and 

set N = (XgIg E G). The following are equivalent: 

(a) ( X , X  9) is triangular for each g E G. 

(b) N is triangular. 

Proof: Clearly (b) implies (a). So assume (a) holds. We may assume that G 
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acts irreducibly and in particular contains no normal unipotent subgroup. If G 

is connected, it follows by Theorem 5.5 that X is central in G. So assume k has 

characteristic zero. 

We can assmne that k is algebraically closed. Let 6 be the closure of G. Let 

x E X mad W~ = (xg]g E 6) .  Since G is dense in G, the condition of 5.6(c) 

holds for every z E X and g E G. By Theorem 5.6, [W~, W~] is contained in 

the unipotent radical of 6 and so W~ is abelian. Since G is irreducible, every 

normal subgroup acts completely reducibly. It follows that W~ is diagonal. Since 

( X , X  9) is triangular, [x, yg] is unipotent for any x ,y  E X , g  E G. Since also, 

[z, yg] E W~, it is semisimple. Thus [X, Xg] = 1 and so N is generated by 

commuting semisimple elements and so is diagonal as desired. 

Our final result is a linear version of Theorem A. The proof of this result 

does depend upon the classification of finite simple groups. The characteristic 

restriction is probably not necessary. 

THEOREM 5 . 8 :  Let G <_ G L , ( k )  with k a field of characteristic r. Assume 

x E G is unipotent and that [x,g] is unipotent for all g E G. I f x  has orderr  (for 

example if," > n)  or v = O, then (xUlg E G) is a unipotent subgroup of G. 

Proof." As usual, we may assume that G is finitely generated. Suppose N = 

(zg [g E G) is not a unipotent subgroup. Let Y E N with Y uot unipotent. By 

Lemma 5.1, there exists a finite field F and a homomorphism p : G ~ GL, , (F)  

such that p(y) is not unipotent. Let s denote the characteristic of F.  If v is 

positive, then r = s and x rind p(x) have prime order r. If r = 0, then we can 

assume that s > n. Thus p(z) has prime order s. The result now follows by 

Theorem A. 

Note added in proof." The authors have just become aware of the interesting 

article IX] where (among other results) Theorem A is proved for any p-element. 

The proof in IX] is much different than the one given here. It depends upon the 

fact that the finite simple groups of Lie type have a block of defect zero for any 

odd prime and uses the classification of finite simple groups. The proof given 

here when the Sylow p-subgroup is cyclic does not depend on the classification. 

R e f e r e n c e s  

[AL] J. Alperin and R. Lyons, Conjugacy classes of p-elements, J. Algebra 19 (1971), 

536-537. 



Vol. 82, 1993 BAER-SUZUKI THEOREM 297 

[Ar] O.D.  Artemovich, Isolated elements of prime order ill finite groups, Ukranian 

Math. J. 40 (1988), 397-400. 

[All M. gschbacher, Tile 27-dimensional module for E6, IV, J. Algebra 181 (1990), 

23-39. 

[A2] M. Aschbacher, Overgroups of Sylow subgroups in sporadic groups, Memoirs of 

the Amer. Math. Soc. 60 (1986), No. 343. 

[B] A. Borel, Linear Algebraic Groups, 2nd Ed., Springer-Verlag, New York, 1991. 

IF] W. Felt, Tile Representation Theory of Finite Groups, North-Holland Publishing 

Company, Amsterdam, 1982. 

[G1] D. Gorenstein, Finite Groups, Harper & Row, New York, I968. 

[G2] D. Gorenstein, Finite Simple Groups - -  All hltroduction to their Classification, 

Plenum Press, New York, 1982. 

[Gr] F. Gross, Automorphisms which centralize a Sylow p-subgroup, J. Algebra 77 

(1982), 202-233. 

[Hi J. Humphreys, Linear Algebric Groups, Springer-Verlag, New York, 1975. 

[S] G. Seitz, Generation of finite groups of Lie type, Trans. Amer. Math. Soc. 271 

(1982), 351-407. 

[St] R. Steinberg, Endomorphisms of linear algebraic groups, Mere. Amer. Math. Soc., 

80, 1968. 

[Wa] H. N. Ward, On Ree's series of simple groups, Trans. Amer. Math. Soc. 121 

(1966), 62-89. 

[W] H. Wielandt, Kriterlen fllr Subnormalit~t in endlichen Gruppen, Math Z. 188 

(1974), 199-203. 

[X] Wen-jun Xiao, Glauberman's conjecture, Mazurov's problem and Peng's problem, 

Science in China Series A a4 (1991), 1025-1031. 


